Example 1: The uncertainty in the momentum Δp of a ball travelling at 20 m/s is $1\times10-6$ of its momentum. Calculate the uncertainty in position Δx ? Mass of the ball is given as 0.5 kg.

Answer:

Known numerics are, v = 20 m/s,

m = 0.5 kg,

 $h = 6.62607004 \times 10^{-34} \, \text{m}^2 \, \text{kg} \, / \, \text{s}$

 $\Delta p = p \times 1 \times 10 - 6$

As we know that, $P = m \times v = 0.5 \times 20 = 10 \text{kg m/s}$ $\Delta p = 10 \times 1 \times 10 - 6$

 $\Delta p = 10^{-5}$

Heisenberg Uncertainty principle formula is given as,

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$

$$\Delta \times \, \geq \, \frac{h}{4\pi \Delta p}$$

$$\Delta \times \, \geq \, \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 10^{-5}} \, = 0.527 \, \times \, 10^{-29} m$$